

Best Practices Design Patterns:
Optimizing Amazon S3

Performance
June 2019

Notices

Customers are responsible for making their own independent assessment of the

information in this document. This document: (a) is for informational purposes only, (b)

represents current AWS product offerings and practices, which are subject to change

without notice, and (c) does not create any commitments or assurances from AWS and

its affiliates, suppliers or licensors. AWS products or services are provided “as is”

without warranties, representations, or conditions of any kind, whether express or

implied. The responsibilities and liabilities of AWS to its customers are controlled by

AWS agreements, and this document is not part of, nor does it modify, any agreement

between AWS and its customers.

© 2019 Amazon Web Services, Inc. or its affiliates. All rights reserved.

Contents

Introduction .. 1

Performance Guidelines for Amazon S3 .. 2

Measure Performance.. 2

Scale Storage Connections Horizontally ... 2

Use Byte-Range Fetches ... 2

Retry Requests for Latency-Sensitive Applications .. 3

Combine Amazon S3 (Storage) and Amazon EC2 (Compute) in the Same AWS

Region .. 3

Use Amazon S3 Transfer Acceleration to Minimize Latency Caused by Distance........ 3

Use the Latest Version of the AWS SDKs... 4

Performance Design Patterns for Amazon S3.. 4

Using Caching for Frequently Accessed Content ... 4

Timeouts and Retries for Latency-Sensitive Applications ... 5

Horizontal Scaling and Request Parallelization for High Throughput 6

Using Amazon S3 Transfer Acceleration to Accelerate Geographically Disparate Data

Transfers .. 7

Contributors ... 8

Document Revisions.. 8

Abstract

When building applications that upload and retrieve storage from Amazon S3, follow our

best practices guidelines to optimize performance. We also offer more

detailed Performance Design Patterns.

https://docs.aws.amazon.com/AmazonS3/latest/dev/optimizing-perforance-design-patterns.html

Amazon Web Services Best Practices Design Patterns: Optimizing Amazon S3 Performance

 Page 1

Introduction

Your applications can easily achieve thousands of transactions per second in request

performance when uploading and retrieving storage from Amazon S3. Amazon S3

automatically scales to high request rates. For example, your application can achieve at

least 3,500 PUT/COPY/POST/DELETE and 5,500 GET/HEAD requests per second per

prefix in a bucket. There are no limits to the number of prefixes in a bucket. You can

increase your read or write performance by parallelizing reads. For example, if you

create 10 prefixes in an Amazon S3 bucket to parallelize reads, you could scale your

read performance to 55,000 read requests per second.

Some data lake applications on Amazon S3 scan many millions or billions of objects for

queries that run over petabytes of data. These data lake applications achieve single-

instance transfer rates that maximize the network interface use for their Amazon

EC2 instance, which can be up to 100 Gb/s on a single instance. These applications

then aggregate throughput across multiple instances to get multiple terabits per second.

Other applications are sensitive to latency, such as social media messaging

applications. These applications can achieve consistent small object latencies (and first-

byte-out latencies for larger objects) of roughly 100–200 milliseconds.

Other AWS services can also help accelerate performance for different application

architectures. For example, if you want higher transfer rates over a single HTTP

connection or single-digit millisecond latencies, use Amazon CloudFront or Amazon

ElastiCache for caching with Amazon S3.

Additionally, if you want fast data transport over long distances between a client and an

S3 bucket, use Amazon S3 Transfer Acceleration. Transfer Acceleration uses the

globally distributed edge locations in CloudFront to accelerate data transport over

geographical distances.

If your Amazon S3 workload uses server-side encryption with AWS Key Management

Service (SSE-KMS), see AWS KMS Limits in the AWS Key Management Service

Developer Guide for information about the request rates supported for your use case.

The following topics describe best practice guidelines and design patterns for optimizing

performance for applications that use Amazon S3.

This guidance supersedes any previous guidance on optimizing performance for

Amazon S3. For example, previously Amazon S3 performance guidelines

recommended randomizing prefix naming with hashed characters to optimize

https://docs.aws.amazon.com/ec2/index.html
https://docs.aws.amazon.com/ec2/index.html
https://docs.aws.amazon.com/cloudfront/index.html
https://docs.aws.amazon.com/elasticache/index.html
https://docs.aws.amazon.com/elasticache/index.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/transfer-acceleration.html
https://docs.aws.amazon.com/kms/latest/developerguide/limits.html

Amazon Web Services Best Practices Design Patterns: Optimizing Amazon S3 Performance

 Page 2

performance for frequent data retrievals. You no longer have to randomize prefix

naming for performance, and can use sequential date-based naming for your prefixes.

Refer to Performance Guidelines and Performance Design Patterns for the most current

information about performance optimization for Amazon S3.

Performance Guidelines for Amazon S3

To obtain the best performance for your application on Amazon S3, we recommend the

following guidelines.

Measure Performance

When optimizing performance, look at network throughput, CPU, and DRAM

requirements. Depending on the mix of demands for these different resources, it might

be worth evaluating different Amazon EC2 instance types. For more information about

instance types, see Instance Types in the Amazon EC2 User Guide for Linux Instances.

It’s also helpful to look at DNS lookup time, latency, and data transfer speed using

HTTP analysis tools when measuring performance.

Scale Storage Connections Horizontally

Spreading requests across many connections is a common design pattern to

horizontally scale performance. When you build high performance applications, think of

Amazon S3 as a very large distributed system, not as a single network endpoint like a

traditional storage server. You can achieve the best performance by issuing multiple

concurrent requests to Amazon S3. Spread these requests over separate connections

to maximize the accessible bandwidth from Amazon S3. Amazon S3 doesn't have any

limits for the number of connections made to your bucket.

Use Byte-Range Fetches

Using the Range HTTP header in a GET Object request, you can fetch a byte-range

from an object, transferring only the specified portion. You can use concurrent

connections to Amazon S3 to fetch different byte ranges from within the same object.

This helps you achieve higher aggregate throughput versus a single whole-object

request. Fetching smaller ranges of a large object also allows your application to

improve retry times when requests are interrupted. For more information, see Getting

Objects.

https://docs.aws.amazon.com/ec2/index.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-types.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectGET.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/GettingObjectsUsingAPIs.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/GettingObjectsUsingAPIs.html

Amazon Web Services Best Practices Design Patterns: Optimizing Amazon S3 Performance

 Page 3

Typical sizes for byte-range requests are 8 MB or 16 MB. If objects are PUT using a

multipart upload, it’s a good practice to GET them in the same part sizes (or at least

aligned to part boundaries) for best performance. GET requests can directly address

individual parts; for example, GET ?partNumber=N.

Retry Requests for Latency-Sensitive Applications

Aggressive timeouts and retries help drive consistent latency. Given the large scale of

Amazon S3, if the first request is slow, a retried request is likely to take a different path

and quickly succeed. The AWS SDKs have configurable timeout and retry values that

you can tune to the tolerances of your specific application.

Combine Amazon S3 (Storage) and Amazon EC2

(Compute) in the Same AWS Region

Although S3 bucket names are globally unique, each bucket is stored in a Region that

you select when you create the bucket. To optimize performance, we recommend that

you access the bucket from Amazon EC2 instances in the same AWS Region when

possible. This helps reduce network latency and data transfer costs.

For more information about data transfer costs, see Amazon S3 Pricing.

Use Amazon S3 Transfer Acceleration to Minimize

Latency Caused by Distance

Amazon S3 Transfer Acceleration manages fast, easy, and secure transfers of files over

long geographic distances between the client and an S3 bucket. Transfer Acceleration

takes advantage of the globally distributed edge locations in Amazon CloudFront. As

the data arrives at an edge location, it is routed to Amazon S3 over an optimized

network path. Transfer Acceleration is ideal for transferring gigabytes to terabytes of

data regularly across continents. It's also useful for clients that upload to a centralized

bucket from all over the world.

You can use the Amazon S3 Transfer Acceleration Speed Comparison tool to compare

accelerated and non-accelerated upload speeds across Amazon S3 Regions. The

Speed Comparison tool uses multipart uploads to transfer a file from your browser to

various Amazon S3 Regions with and without using Amazon S3 Transfer Acceleration.

https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingBucket.html
https://aws.amazon.com/s3/pricing/
https://docs.aws.amazon.com/AmazonS3/latest/dev/transfer-acceleration.html
https://docs.aws.amazon.com/cloudfront/index.html
http://s3-accelerate-speedtest.s3-accelerate.amazonaws.com/en/accelerate-speed-comparsion.html

Amazon Web Services Best Practices Design Patterns: Optimizing Amazon S3 Performance

 Page 4

Use the Latest Version of the AWS SDKs

The AWS SDKs provide built-in support for many of the recommended guidelines for

optimizing Amazon S3 performance. The SDKs provide a simpler API for taking

advantage of Amazon S3 from within an application and are regularly updated to follow

the latest best practices. For example, the SDKs include logic to automatically retry

requests on HTTP 503 errors and are investing in code to respond and adapt to slow

connections.

The SDKs also provide the Transfer Manager, which automates horizontally scaling

connections to achieve thousands of requests per second, using byte-range requests

where appropriate. It’s important to use the latest version of the AWS SDKs to obtain

the latest performance optimization features.

You can also optimize performance when you are using HTTP REST API requests.

When using the REST API, you should follow the same best practices that are part of

the SDKs. Allow for timeouts and retries on slow requests, and multiple connections to

allow fetching of object data in parallel. For information about using the REST API, see

the Amazon Simple Storage Service API Reference.

Performance Design Patterns for Amazon S3

When designing applications to upload and retrieve storage from Amazon S3, use our

best practices design patterns for achieving the best performance for your application.

We also offer Performance Guidelines for you to consider when planning your

application architecture.

To optimize performance, you can use the following design patterns.

Using Caching for Frequently Accessed Content

Many applications that store data in Amazon S3 serve a “working set” of data that is

repeatedly requested by users. If a workload is sending repeated GET requests for a

common set of objects, you can use a cache such as Amazon CloudFront, Amazon

ElastiCache, or AWS Elemental MediaStore to optimize performance. Successful cache

adoption can result in low latency and high data transfer rates. Applications that use

caching also send fewer direct requests to Amazon S3, which can help reduce request

costs.

https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/examples-s3-transfermanager.html
https://docs.aws.amazon.com/AmazonS3/latest/API/
https://docs.aws.amazon.com/AmazonS3/latest/dev/optimizing-perforance-guidelines.html
https://docs.aws.amazon.com/cloudfront/index.html
https://docs.aws.amazon.com/elasticache/index.html
https://docs.aws.amazon.com/elasticache/index.html
https://docs.aws.amazon.com/mediastore/index.html

Amazon Web Services Best Practices Design Patterns: Optimizing Amazon S3 Performance

 Page 5

Amazon CloudFront is a fast content delivery network (CDN) that transparently caches

data from Amazon S3 in a large set of geographically distributed points of presence

(PoPs). When objects might be accessed from multiple Regions, or over the internet,

CloudFront allows data to be cached close to the users that are accessing the objects.

This can result in high performance delivery of popular Amazon S3 content. For

information about CloudFront, see the Amazon CloudFront Developer Guide.

Amazon ElastiCache is a managed, in-memory cache. With ElastiCache, you can

provision Amazon EC2 instances that cache objects in memory. This caching results in

orders of magnitude reduction in GET latency and substantial increases in download

throughput. To use ElastiCache, you modify application logic to both populate the cache

with hot objects and check the cache for hot objects before requesting them from

Amazon S3. For examples of using ElastiCache to improve Amazon S3 GET

performance, see the blog post Turbocharge Amazon S3 with Amazon ElastiCache for

Redis.

AWS Elemental MediaStore is a caching and content distribution system specifically

built for video workflows and media delivery from Amazon S3. MediaStore provides

end-to-end storage APIs specifically for video, and is recommended for performance-

sensitive video workloads. For information about MediaStore, see the AWS Elemental

MediaStore User Guide.

Timeouts and Retries for Latency-Sensitive

Applications

There are certain situations where an application receives a response from Amazon S3

indicating that a retry is necessary. Amazon S3 maps bucket and object names to the

object data associated with them. If an application generates high request rates

(typically sustained rates of over 5,000 requests per second to a small number of

objects), it might receive HTTP 503 slowdown responses. If these errors occur, each

AWS SDK implements automatic retry logic using exponential backoff. If you are not

using an AWS SDK, you should implement retry logic when receiving the HTTP 503

error. For information about back-off techniques, see Error Retries and Exponential

Backoff in AWS in the Amazon Web Services General Reference.

Amazon S3 automatically scales in response to sustained new request rates,

dynamically optimizing performance. While Amazon S3 is internally optimizing for a new

request rate, you will receive HTTP 503 request responses temporarily until the

optimization completes. After Amazon S3 internally optimizes performance for the new

request rate, all requests are generally served without retries.

https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/
https://aws.amazon.com/blogs/storage/turbocharge-amazon-s3-with-amazon-elasticache-for-redis/
https://aws.amazon.com/blogs/storage/turbocharge-amazon-s3-with-amazon-elasticache-for-redis/
https://docs.aws.amazon.com/mediastore/latest/ug/
https://docs.aws.amazon.com/mediastore/latest/ug/
https://docs.aws.amazon.com/general/latest/gr/api-retries.html
https://docs.aws.amazon.com/general/latest/gr/api-retries.html

Amazon Web Services Best Practices Design Patterns: Optimizing Amazon S3 Performance

 Page 6

For latency-sensitive applications, Amazon S3 advises tracking and aggressively

retrying slower operations. When you retry a request, we recommend using a new

connection to Amazon S3 and performing a fresh DNS lookup.

When you make large variably sized requests (for example, more than 128 MB), we

advise tracking the throughput being achieved and retrying the slowest 5 percent of the

requests. When you make smaller requests (for example, less than 512 KB), where

median latencies are often in the tens of milliseconds range, a good guideline is to retry

a GET or PUT operation after 2 seconds. If additional retries are needed, the best

practice is to back off. For example, we recommend issuing one retry after 2 seconds

and a second retry after an additional 4 seconds.

If your application makes fixed-size requests to Amazon S3, you should expect more

consistent response times for each of these requests. In this case, a simple strategy is

to identify the slowest 1 percent of requests and to retry them. Even a single retry is

frequently effective at reducing latency.

If you are using AWS Key Management Service (AWS KMS) for server-side encryption,

see Limits in the AWS Key Management Service Developer Guide for information about

the request rates that are supported for your use case.

Horizontal Scaling and Request Parallelization for

High Throughput

Amazon S3 is a very large distributed system. To help you take advantage of its scale,

we encourage you to horizontally scale parallel requests to the Amazon S3 service

endpoints. In addition to distributing the requests within Amazon S3, this type of scaling

approach helps distribute the load over multiple paths through the network.

For high-throughput transfers, Amazon S3 advises using applications that use multiple

connections to GET or PUT data in parallel. For example, this is supported by Amazon

S3 Transfer Manager in the AWS Java SDK, and most of the other AWS SDKs provide

similar constructs. For some applications, you can achieve parallel connections by

launching multiple requests concurrently in different application threads, or in different

application instances. The best approach to take depends on your application and the

structure of the objects that you are accessing.

You can use the AWS SDKs to issue GET and PUT requests directly rather than

employing the management of transfers in the AWS SDK. This approach lets you tune

your workload more directly, while still benefiting from the SDK’s support for retries and

https://docs.aws.amazon.com/kms/latest/developerguide/limits.html
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/examples-s3-transfermanager.html
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/examples-s3-transfermanager.html

Amazon Web Services Best Practices Design Patterns: Optimizing Amazon S3 Performance

 Page 7

its handling of any HTTP 503 responses that might occur. As a general rule, when you

download large objects within a Region from Amazon S3 to Amazon EC2, we suggest

making concurrent requests for byte ranges of an object at the granularity of 8–16 MB.

Make one concurrent request for each 85–90 MB/s of desired network throughput. To

saturate a 10 Gb/s network interface card (NIC), you might use about 15 concurrent

requests over separate connections. You can scale up the concurrent requests over

more connections to saturate faster NICs, such as 25 Gb/s or 100 Gb/s NICs.

Measuring performance is important when you tune the number of requests to issue

concurrently. We recommend starting with a single request at a time. Measure the

network bandwidth being achieved and the use of other resources that your application

uses in processing the data. You can then identify the bottleneck resource (that is, the

resource with the highest usage), and hence the number of requests that are likely to be

useful. For example, if processing one request at a time leads to a CPU usage of 25

percent, it suggests that up to four concurrent requests can be accommodated.

Measurement is essential, and it is worth confirming resource use as the request rate is

increased.

If your application issues requests directly to Amazon S3 using the REST API, we

recommend using a pool of HTTP connections and re-using each connection for a

series of requests. Avoiding per-request connection setup removes the need to perform

TCP slow-start and Secure Sockets Layer (SSL) handshakes on each request. For

information about using the REST API, see the Amazon Simple Storage Service API

Reference.

Finally, it’s worth paying attention to DNS and double-checking that requests are being

spread over a wide pool of Amazon S3 IP addresses. DNS queries for Amazon S3 cycle

through a large list of IP endpoints. But caching resolvers or application code that

reuses a single IP address do not benefit from address diversity and the load balancing

that follows from it. Network utility tools such as the netstat command line tool can

show the IP addresses being used for communication with Amazon S3, and we provide

guidelines for DNS configurations to use. For more information about these guidelines,

see DNS Considerations.

Using Amazon S3 Transfer Acceleration to Accelerate

Geographically Disparate Data Transfers

Amazon S3 Transfer Acceleration is effective at minimizing or eliminating the latency

caused by geographic distance between globally dispersed clients and a regional

application using Amazon S3. Transfer Acceleration uses the globally distributed edge

https://docs.aws.amazon.com/ec2/index.html
https://docs.aws.amazon.com/AmazonS3/latest/API/
https://docs.aws.amazon.com/AmazonS3/latest/API/
https://docs.aws.amazon.com/AmazonS3/latest/dev/DNSConsiderations.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/transfer-acceleration.html

Amazon Web Services Best Practices Design Patterns: Optimizing Amazon S3 Performance

 Page 8

locations in CloudFront for data transport. The AWS edge network has points of

presence in more than 50 locations. Today, it is used to distribute content through

CloudFront and to provide rapid responses to DNS queries made to Amazon Route 53.

The edge network also helps to accelerate data transfers into and out of Amazon S3. It

is ideal for applications that transfer data across or between continents, have a fast

internet connection, use large objects, or have a lot of content to upload. As the data

arrives at an edge location, data is routed to Amazon S3 over an optimized network

path. In general, the farther away you are from an Amazon S3 Region, the higher the

speed improvement you can expect from using Transfer Acceleration.

You can set up Transfer Acceleration on new or existing buckets. You can use a

separate Amazon S3 Transfer Acceleration endpoint to use the AWS edge locations.

The best way to test whether Transfer Acceleration helps client request performance is

to use the Amazon S3 Transfer Acceleration Speed Comparison tool. Network

configurations and conditions vary from time to time and from location to location. So,

you are charged only for transfers where Amazon S3 Transfer Acceleration can

potentially improve your upload performance. For information about using Transfer

Acceleration with different AWS SDKs, see Amazon S3 Transfer Acceleration

Examples.

Contributors

Contributors to this document include:

• Mai-Lan Tomsen Bukovec, VP, Amazon S3

• Andy Warfield, Senior Principal Engineer, Amazon S3

• Tim Harris, Principal Engineer, Amazon S3

Document Revisions

Date Description

June 2019 First publication

https://docs.aws.amazon.com/route53/index.html
http://s3-accelerate-speedtest.s3-accelerate.amazonaws.com/en/accelerate-speed-comparsion.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/transfer-acceleration-examples.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/transfer-acceleration-examples.html

	Introduction
	Performance Guidelines for Amazon S3
	Measure Performance
	Scale Storage Connections Horizontally
	Use Byte-Range Fetches
	Retry Requests for Latency-Sensitive Applications
	Combine Amazon S3 (Storage) and Amazon EC2 (Compute) in the Same AWS Region
	Use Amazon S3 Transfer Acceleration to Minimize Latency Caused by Distance
	Use the Latest Version of the AWS SDKs

	Performance Design Patterns for Amazon S3
	Using Caching for Frequently Accessed Content
	Timeouts and Retries for Latency-Sensitive Applications
	Horizontal Scaling and Request Parallelization for High Throughput
	Using Amazon S3 Transfer Acceleration to Accelerate Geographically Disparate Data Transfers

	Contributors
	Document Revisions

